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Abstract
The outbreak of the Coronavirus disease 2019 (COVID-19) caused the death of a large number of people and declared as a 
pandemic by the World Health Organization. Millions of people are infected by this virus and are still getting infected every 
day. As the cost and required time of conventional Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests to 
detect COVID-19 is uneconomical and excessive, researchers are trying to use medical images such as X-ray and Computed 
Tomography (CT) images to detect this disease with the help of Artificial Intelligence (AI)-based systems, to assist in auto-
mating the scanning procedure. In this paper, we reviewed some of these newly emerging AI-based models that can detect 
COVID-19 from X-ray or CT of lung images. We collected information about available research resources and inspected a 
total of 80 papers till June 20, 2020. We explored and analyzed data sets, preprocessing techniques, segmentation methods, 
feature extraction, classification, and experimental results which can be helpful for finding future research directions in the 
domain of automatic diagnosis of COVID-19 disease using AI-based frameworks. It is also reflected that there is a scarcity 
of annotated medical images/data sets of COVID-19 affected people, which requires enhancing, segmentation in preprocess-
ing, and domain adaptation in transfer learning for a model, producing an optimal result in model performance. This survey 
can be the starting point for a novice/beginner level researcher to work on COVID-19 classification.
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Introduction

Coronavirus Disease 2019 (COVID-19) is an infectious 
disease that started to proliferate from Wuhan China, in 
December 2019 [1]. Within a short period of time, this dis-
ease is ravaged every corner of the world and the World 
Health Organization declared this disease as a pandemic on 
11 March 2020 [2]. This disease is caused by the strain of 
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2). In July 2020, cases reached almost 12 million 
worldwide, and death due to this disease kept rising day 

by day, and the death toll is 562,039 [3]. From the Worl-
dometers data, the total deaths and total cures (based on 
month) is illustrated in Fig. 1 [3]. Observing the statistics 
and properties of COVID-19 it can be asserted that this life-
threatening virus can unfurl from individual to individual 
via cough, sneezing, or even close contact. As a result, it has 
become important to detect the affected people earlier and 
isolate them to stop further spreading of this virus.

RT-PCR is a procedure of assembling samples from a 
region of a person’s body, where the coronavirus is most 
likely to congregate, such as a person’s nose or throat. Then 
this sample goes through a process called extraction, which 
separates the genetic data from any virus that may exist. 
A particular chemical along with a PCR machine (thermal 
cycler) is applied, which originates a reaction that creates 
millions of copies of SARS-CoV-2 virus’s genome. A beam 
of light is produced by one of the chemicals if SARS-COV-2 
is present in the sample. The beam of light is traced by the 
PCR machine which indicates a positive test result for the 
existence of the coronavirus.

This article is part of the topical collection “Computer Aided 
Methods to Combat COVID-19 Pandemic” guest edited by 
David Clifton, Matthew Brown, Yuan-Ting Zhang and Tapabrata 
Chakraborty.
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Though RT-PCR can distinctly identify coronavirus 
disease, it has a high false-negative rate, where the model 
predicts the result as negative but actually, it is positive 
(false-negative). Furthermore, in many regions of the world 
RT-PCR’s availability is limited. Hence, medical images 
such as Computer Tomography (CT) and X-ray images can 
be the next best alternative to detect this virus as most of the 
medical or hospital commonly have this apparatus to gener-
ate images. Also, CT or X-ray images are readily available, 
where there is no RT-PCR. Moreover, RT-PCR is expensive 
and consumes a considerable amount of time for the identifi-
cation. In addition, proper training is required for the health 
workers to collect samples for PCR, whereas it is relatively 
easy to handle and produce CT and X-ray images.

To work on these medical images, deep learning meth-
ods are the most conventional and might be the only direc-
tion. Deep Learning is an emerging field that could play 
a significant role in the detection of COVID-19 in the 
future. Till now researchers have used machine learning/
deep learning models to detect COVID-19 using medical 
images such as X-ray or CT images and obtained promising 
results. Many researchers also used transfer learning, atten-
tion mechanism [5], and Gradient-weighted Class Activa-
tion Mapping (Grad-CAM) [6] to make their results more 
accurate. Shi et al. [7] and Ilyas et al. [8] discussed some 
artificial intelligence-based models for diagnosis of COVID-
19. In addition, Ulhaq et al. [9] reviewed some papers that 
worked on diagnosis, prevention, control, treatment, and 
clinical management of COVID-19. Besides, Ismael et al. 
[10] approached different types of Machine Learning and 
Deep Learning techniques COVID-19 detection working on 
X-ray images. Furthermore, a majority voting-based ense-
ble classifier technique is employed by Chandra et al. [11]. 
However, as time goes by researchers are finding advanced 

and improved architectures for the diagnosis of COVID-19. 
In this paper, we have tried to review these new methods 
alongside with the basic structures of the earlier COVID-19 
classification models. This survey will cover the research 
papers that are published or in pre-print format. Although it 
is not the most favorable approach due to the likelihood of 
below standard and research without peer-review, we intend 
to share all proposals and information in a single place while 
giving importance to the automatic diagnosis of COVID-19 
in X-ray and CT images of lungs.

The fundamental aim of this paper is to systematically 
summarize the workflow of the existing researches, accu-
mulate all the different sources of data sets of lung CT and 
X-ray images, sum up the frequently used methods to auto-
matically diagnose COVID-19 using medical images so that 
a novice researcher can analyze previous works and find a 
better solution. We oriented our paper as follows:

– First, the Data set source and different types of images 
used in the papers are described in “COVID-19 Dataset 
and Resouce Description”.

– Second, the methodology where data preprocessing 
and augmentation techniques, feature extraction meth-
ods, classification, segmentation, and evaluation that 
researchers obtained are charactized in “Methodologies”.

– Finally, a discussion is made to aid the new researcher to 
find future works in detecting COVID-19.

COVID‑19 Data Set and Resouce Description

The diagnosis of any disease is like the light at the end of the 
tunnel. In the case of the COVID-19 pandemic, the impor-
tance of earlier diagnosis and detecting the disease is beyond 

Fig. 1  Total case, total death, 
and total cured (by month) from 
worldometer [4]
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measure. The initial focus must be on the data by which we 
need to efficiently train a model. This data will help Machine 
Learning (ML) or Deep Learning (DL) algorithms to diag-
nose COVID-19 cases. Due to the disadvantages of RT-PCR, 
researchers adopted an alternative method which is the use 
of Artificial Intelligence on chest CT or X-ray images to 
diagnose COVID-19. Fundamentally, a chest CT image is 
an image taken using the computed tomography (CT) scan 
procedure, where X-ray images are captured from different 
angles and compiled to form a single image. A depiction of 
the CT images (COVID-19 infected and Normal) is illus-
trated in Fig. 2.

Although a CT scan consumes less time to demonstrate, 
it is fairly expensive. As a result, many researchers adopted 
X-ray images instead of CT images to develop a COVID-
19 detection model. A chest X-ray is a procedure of using 
X-rays to generate images of the chest. In addition, it is rela-
tively economical and convenient to maintain. X-ray images 
of different people with COVID-19, viral pneumonia, bacte-
rial pneumonia, and a person without any disease (normal) 
are shown in Fig. 3. Furthermore, in this section, an over-
view of the data set sources used in the existing papers is 
characterized and data sets of both CT and X-ray images are 
illustrated and covered in this section.

Data Set and Its Sources

Nowadays, the exchange of information between research-
ers and physicians creates difficulties due to the lockdown 
phase. Hence, massive COVID-19 data are out of reach 
or difficult to find for many researchers. As a deep learn-
ing architecture needs a considerable number of images 
to learn a model appropriately and efficiently, the existing 
COVID-19 automation researches are still in preliminary 
stages. However, some COVID-19 data sets are proposed 
and employed by the researchers which show exceptional 
results in detecting the COVID-19 affected lungs. To cor-
roborate a beginner researcher, we have accumulated the 
abstract information of the data sets and their sources. A list 
of the data set sources from February 2020 to June 2020 is 
embellished in Table 1. In the following, we will cover both 
CT and X-ray images and their fundamental attributes.

Some of the most popular data sets were collected from 
the following hospitals. Xu et al. [3] collected their data set 
from First Affiliated Hospital of Zhejiang University, the 
No. 6 People’s Hospital of Wenzhou, and the No. 1 People’s 
Hospital of Wenling. Song et al. [64] collected their data sets 
from three hospitals—Renmin Hospital of Wuhan Univer-
sity, and two affiliated hospitals (the Third Affiliated Hospi-
tal and Sun Yat-Sen Memorial Hospital) of the Sun Yat-sen 
University in Guangzhou. Chen et al. [73] built their data 
from the Renmin Hospital of Wuhan University (Wuhan, 
Hubei province, China). Shi et al. [75] built their data set 
from three hospitals Tongji Hospital of Huazhong University 
of Science and Technology, Shanghai Public Health Clinical 
Center of Fudan University, and China–Japan Union Hospi-
tal of Jilin University. Selvaraju et al. [6] used five different 
hospitals data to build their data set, including Beijing Tsin-
ghua Changgung Hospital, Wuhan No. 7 Hospital, Zhong-
nan Hospital of Wuhan University, Tianyou Hospital Affili-
ated to Wuhan University of Science and Technology, and 
Wuhan’s Leishenshan Hospital. Zheng et al. [62] took data 
from Union Hospital, Tongji Medical College, Huazhong 
University of Science and Technology.Fig. 2  Lung CT-scan images a COVID-19 affected, b normal

Fig. 3  X-ray images a COVID-19, b viral pneumonia, c bacterial pneumonia, d normal from COVID19-XRay-data set
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CT Image Sources

As CT images are said to be detailed than X-ray images, the 
diagnosis of COVID-19 and developing a model becomes 
more convenient by employing the CT-scan images. For CT 
images-based works, four papers used the COVID-19 CT 
segmentation data set to develop a classification architec-
ture. This data set contains hundred axial CT images from 
forty patients [17–20]. Chen et al. [17] and Qiu et al. [19] 
achieved 89% and 83.62% accuracy, respectively, using this 
data set. Furthermore, two authors adopted the Lung Image 

Database Consortium (LIDC) data set and accomplished an 
accuracy above 90% [12, 13]. Besides these, some authors 
used Societa Italiana di Radiologia Medica e Interventistica 
to generate data sets [15], Lung Segmentation, and Can-
didate Points Generation [16], COVID-CT [21], and HUG 
data set [14] for their purpose. A representation of these 
data set sources is characterized in Table 1 and depicted in 
Fig. 4 (based on months). From the table, we can infer that 
the COVID-19 CT segmentation data set was used mostly in 
April 2020 and Lung Image Database Consortium (LIDC) 
data set was used in March 2020 and June 2020 [17–20]. 

Table 1  Summary of different data sources used in the papers

Type Data set name Data set source Papers

CT The Lung Image Database Consortium (LIDC) https:// doi. org/ 10. 1118/1. 35282 04 [12, 13]
CT China University Hospitals of Geneva (HUG) www. ChainZ. cn, El-Camino Hospital (CA), 

Zhejiang Province
[14]

CT Societa Italiana di Radiologia Medica e Inter-
ventistica

https:// www. sirm. org/ [15]

CT Lung Segmentation and Candidate Points 
Generation

https:// www. kaggle. com/ artur scuss el/ lung- 
segme ntati on- and- candi date- points- gener 
ation

[16]

CT COVID-19 CT segmentation dataset http:// medic alseg menta tion. com/ COVID 19/ [17–20]
CT COVID-CT https:// github. com/ UCSD- AI4H/ COVID- CT [21]
X-ray and CT COVID-19 X-rays https:// www. kaggle. com/ andre wmvd/ convi 

d19-X- rays
[22–25]

X-ray and CT BIMCV COVID-19+ https:// bimcv. cipf. es/ bimcv- proje cts/ bimcv- 
COVID 19/

[26]

X-ray COVID-chestxray-dataset https:// github. com/ ieee8 023/ COVID- chest 
xray- datas et

[16, 22–25, 27–47]

X-ray Chest X-ray Images (Pneumonia) https:// www. kaggle. com/ pault imoth ymoon ey/ 
chest- xray- pneum onia

[27, 28, 31, 32, 34, 46, 48]

X-ray COVID-19 Radiography Database https:// www. kaggle. com/ tawsi furra hman/ 
COVID 19- radio graphy- datab ase

[44, 49–52]

X-ray British Society of Thoracic (BSTI) https:// www. bsti. org. uk/ train ing- and- educa tion [31]
X-ray Radiopedia https:// radio paedia. org/ artic les/ normal- chest- 

imagi ng- examp les? lang= gb
[31, 33, 36, 45, 53]

X-ray COVID-19 Chest X-ray Dataset Initiative https:// github. com/ agchu ng/ Figur e1- COVID- 
chest xray- datas et

[50, 51]

X-ray ActualMed COVID-19 Chest X-ray Dataset 
Initiative

https:// github. com/ agchu ng/ Actua lmed- 
COVID- chest xray- datas et

[50, 51]

X-ray COVID-19 Image Data Collection https:// arxiv. org/ abs/ 2003. 11597 [51, 54]
X-ray COVID-19 database https:// www. sirm. org/ categ ory/ senza- categ oria/ 

COVID- 19/
[33, 36, 52, 54–56]

X-ray Optical Coherence Tomography (OCT) https:// data. mende ley. com/ datas ets/ rscbj 
br9sj/2.

[25, 47, 57]

X-ray COVID-19 X-ray dataset (COVID-CAPS) https:// github. com/ Shahi nSHH/ COVID- CAPS [58]
X-ray Kaggle RSNA Pneumonia Detection Dataset https:// www. kaggle. com/c/ rsna- pneum onia- 

detec tion- chall enge
[35, 38, 39, 42, 45, 50, 51, 59]

X-ray NIH Chest X-ray Dataset https:// www. kaggle. com/ nih- chest- xrays/ data [36, 60]
X-ray Pneumonia Classification https:// drive. google. com/ open? id= 1J9I- pPtPf 

LRGHJ 42or4 pKO2Q ASHzL kkj
[53]

X-ray COVID-19 https:// github. com/ muham medta lo/ COVID- 19 [60]
X-ray COVIDGR-1.0 https:// github. com/ ari- dasci/ COVID gr [61]
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Some researchers also used other lung disease images apart 
from these mostly used data sets. Nevertheless, they col-
lected CT images from different hospitals to build these data 
sets.

X‑ray Image Sources

X-ray image data set is more available than the CT images 
as the cost of capturing an X-ray image is considerably more 
economical than a CT image. Studying the existing litera-
ture, most of the authors used the COVID-chest X-ray data 
set [32, 42, 47, 63]. Moreover, Kaggle RSNA Pneumonia 
Detection Data set [35, 45, 50], COVID-19 database [33, 
52, 54], Chest X-ray Images (Pneumonia) is adopted to 
evaluate their model [27, 46, 59]. These are the most com-
mon data set for Chest X-ray-based COVID-19 research 
(Table 1). However, these data sets contain a limited number 
of COVID-19 infected lung images which is not efficient to 
train a deep learning model as the model can overfit the data. 
For this purpose, most of the researchers utilized different 
preprocessing techniques to increase the data set size, one of 
them is data augmentation. Furthermore, the existing works 
are trained on a hybrid data set combining the COVID-19 
data set and normal lung images from another repository. 
For X-ray-based works, Al-antari et al. [44] used COVID-
19 Radiography Database for alternative lung diseases. An 
illustration of the eighteen X-ray data set usage is depicted 
in Fig. 5. From there it can be noticed that the COVID-
chest x-ray data set was used by most of the authors fol-
lowed by Kaggle’s Chest X-ray images (Pneumonia) which 
was used mostly in March 2020, April 2020 and June 2020. 
Some papers also used both CT and X-ray images from 
the COVID-19 X-rays and BIMCV COVID-19+ data sets. 
From both Figs. 4 and 5, it can be observed that BIMCV 

COVID-19+ emerged in June 2020 in terms of developing 
a COVID-19 classification model.

Types and Properties of Images in the Data Set

Diseases such as Pneumonia, Severe Acute Respiratory 
Syndrome (SARS), Middle East Respiratory Syndrome 
(MERS), Influenza and Tuberculosis affect the lungs such as 
COVID-19 which can lead to misclassification of X-ray and 
CT images. To avoid this problem, researchers have adapted 
their data set to have images of diseases affecting similar 
regions as COVID-19. Moreover, it is important to cor-
rectly distinguish COVID-19 patients from people who do 
not have COVID-19. For this purpose, the authors also used 
normal lung images collected from healthy people. These 
data sets are developed by combining COVID-19 images, 
other lung disease images such as Viral pneumonia [3, 22, 
23, 28, 49], Bacterial pneumonia [22, 23, 64–67], fungal 
pneumonia [68], SARS [60, 69–71], MERS [70], Influenza 
[13], Tuberculosis [65, 71, 72] and images of healthy people. 
The distribution of different types of lung disease or normal 
images and the number of CT images used by papers are 
illustrated in Table 2. There ‘Not specified (NS)’ indicates 
that papers used that type of image but did not state the 
number explicitly and ‘N/A’ indicates those types of images 
were not used.

Furthermore, the number of different types of CT images 
used in the papers is presented in Fig. 6. From there it can be 
seen that the number of COVID-19 CT images used for clas-
sification is 121,700. A total number of normal CT Images, 
Pneumonia CT Images, and Other lung disease CT images 
are 120,438, 50,268, and 15,999, respectively.

In addition, the distribution of different types of X-ray 
images is depicted in Table 3, where the total number of 

Fig. 4  Bar chart showing seven 
publicly available CT data sets 
used from March, 2020 to June, 
2020
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different images used in fifty research works from Feb-
ruary to June is represented. In Table 2, the distribution 
of different types of images was shown for thirty papers 
which were also from February 2020 to June 2020. Moreo-
ver, ‘Not specified (NS)’ and ‘N/A’ are used in Table 3 
with the same purpose as it did in Table 2.

A depiction of the total number of COVID-19, normal, 
Pneumonia, and other lung disease X-ray images used by 
papers is shown in Fig. 7. From the figure, it can be seen 
that 50 papers used 21,062 COVID-19 images, 168,223 
normal images, 127,456 Pneumonia images, and 114,094 
other lung disease images were used in total. It can be 
said that more CT images of COVID-19 were used than 
COVID-19 X-ray images by comparing Figs. 6 and 7.

Methodologies

After data collection, several preeminent steps must be fol-
lowed to diagnose COVID-19, hence this section depicts 
different techniques employed by different papers. First, 
preprocessing techniques along with their characteristics 
and properties is described. Second, feature extraction 
methods are thoroughly discussed. After that, segmenta-
tion methods and classification techniques are reviewed. 
Finally, the results obtained in the existing studied papers 
are briefly described. The workflow of diagnosing COVID-
19 from X-ray images demonstrated in Fig. 8.

Preprocessing Techniques

There is a high chance that a COVID-19 data set is built 
with some obscure, duplicate, blur, etc. images that 
degrade the performance of a model. Hence, it is neces-
sary and mandatory to perform preprocessing techniques 
on redundant images. Various types of preprocessing tech-
niques can be carried out based on the difficulties of the 
data set. One of the major problems of deep learning is 
overfitting. To minimize the effect of overfitting data aug-
mentation is used in the pre-processing stage. Resizing, 
scaling, cropping, flipping, rotating are the most employed 
data augmentation techniques. Some of these data aug-
mentation techniques are discussed below:

– Resizing is necessary, because the images are not 
always within the same estimate which postures an 
issue, whereas preparing the model. To generalize the 
data set all the images are resized into a fixed dimen-
sion such as 224 × 224 or 299 × 299.

– Flipping or Rotating is done to increase the sample size 
of the data sets. Mainly horizontal and vertical flipping 
is used to do this as depicted in Fig. 9a.

– Scaling or Cropping is the next most used augmenta-
tion technique is scaling or cropping. All the portions 
of the images are not necessary to use. Therefore, to 
reduce the redundancy researchers used the cropping 
method as illustrated in Fig. 9b.

Fig. 5  Bar chart showing 18 publicly available X-ray data sets used from March, 2020 to June, 2020
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– Brightness or Intensity adjusting is mandatory to 
increase or reduce the brightness of the images. An 
example is shown in Fig. 9c.

Table 2  Summary of different type of lung disease and normal 
(healthy patients) CT images used by papers

Paper Normal Pneumonia COVID-19 Total images

[3] 175 224 219 618
[64] 86 100 88 274
[73] N/A 14,469 20,886 35,355
[74] 1325 1735 1296 4356
[75] N/A 1027 1658 2685
[76] 91 NS 877 1418
[12] 100 N/A 106 206
[68] N/A 40 1266 1306
[65] 28,873 30,345 14,944 89,628
[31] 153 N/A 203 356
[14] 1126 N/A 938 2064
[15] 6000 N/A 6000 12,000
[16] 247 N/A 178 425
[77] N/A N/A 150 150
[78] 75,541 N/A 64,771 140,312
[79] 397 N/A 349 746
[80] 195 N/A 275 470
[21] 339 N/A 391 730
[18] N/A N/A 373 373
[81] 495 N/A 449 944
[19] N/A N/A 100 100
[82] NS 740 325 1065
[56] 344 N/A 439 783
[83] N/A 1027 1495 2522
[84] 397 N/A 349 829
[13] 3308 2296 2228 7832
[85] 463 N/A 349 812
Total 120,438 50,268 121,700 308,359

Fig. 6  Total number of CT images of different diseases and normal 
CT images used from February 2020 to June 2020

Table 3  Summary of different type of lung disease and normal 
(healthy patients) X-ray images used by papers

Paper Normal Pneumonia COVID-19 Total images

[63] 25 N/A 25 50
[27] 50 N/A 50 100
[28] 504 700 224 1428
[29] N/A 1431 100 1531
[22] 1583 4290 68 5941
[49] 1579 1485 423 3497
[30] 15 N/A 25 40
[31] 85 N/A 85 170
[50] N/A 5551 358 5909
[54] 3450 N/A 455 3905
[86] 8066 5538 259 13,863
[32] 207 N/A 207 414
[33] N/A 320 135 455
[87] 179 179 179 537
[34] 310 654 284 1248
[66] 7595 8792 313 16700
[58] N/A N/A 120 120
[35] 8851 6054 180 15085
[88] 2400 2600 536 5536
[23] 127 127 127 381
[59] 137 N/A 137 274
[36] 350 322 225 947
[37] 8066 5521 183 13,770
[38] 44,993 14,777 167 59,937
[39] 9039 2306 318 11,663
[89] 8851 6045 215 15,111
[40] 1591 4706 105 6402
[41] 191 131 180 502
[53] 1000 54 90 1144
[90] N/A N/A 462 462
[51] 8066 5551 358 13,975
[69] 80 N/A 105 196
[24] 1000 1000 239 2239
[70] N/A N/A 423 710
[91] 1579 2760 462 4801
[42] 15,000 15,000 99 30,099
[43] 8851 6045 386 15,282
[71] 1126 NS 1050 114,742
[72] 388 1000 500 2191
[92] 2880 5179 415 8474
[25] 1000 2000 309 3309
[48] 25 N/A 25 50
[44] N/A 120 326 1312
[60] 3520 500 250 4281
[67] N/A 1583 305 1888
[52] 13410 13,450 8640 35,500
[45] 554 554 154 1262
[46] 505 512 236 1253
[61] 377 N/A 377 754
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As the COVID-19 data set is built with an insufficient num-
ber of COVID infected images, Generative Adversarial Net-
works (GAN) can be employed to generate COVID affected 
lung images which can be a path to avoid overfitting or data 
insufficiency. GAN is an unsupervised learning process 
structured on generative modeling embedded with deep 
learning architectures. It finds the patterns, similarities in 
the input data sets and generates new data which is similar 
to the input data set. GAN [93] increases the sample size in 
the data set but the quality of the samples is not guaranteed.

A representation of the papers—applying augmentation 
techniques on their model is characterized in Table 4 and 
the percentage usage of these augmentation techniques is 
depicted in Fig. 10. From there it can be seen that resize 
and flipping has the highest percentage of 27.9% and 27.0%, 

respectively. Scaling or Cropping, Contrast Adjusting, 
Brightness Adjusting, and GAN is 22.1%, 12.3%, 7.4%, and 
3.3%, respectively. Besides these techniques, some authors 
used various traditional image preprocessing techniques 
such as Histogram Equalization [70], Adaptive Winner Filter 
[80], Affine Transformation [29, 40], Histogram Enhance-
ment [40], Color Jittering [29].

Segmentation

It is necessary to train a model with the most significant fea-
tures as unnecessary features or image region discredit the 
performance of the model. Therefore, extracting the Region 
of Interest (ROI) is the preeminent task before the training 
stage. For that purpose, segmentation comes into the hand 
as it can segregate the irrelevant and unnecessary regions of 
an image. In digital image processing and computer vision, 
image segmentation is defined as the technique of partition-
ing a digital image into different segments based on some 
pre-defined criteria, where a segment delineates as a set of 
pixels. Like other areas of medical image processing, seg-
mentation boosts the effectiveness of COVID-19 detection 
by finding the ROI such as the lung region. Areas of the 
image that are redundant and not related to the significant 
feature area (out of the lung) could meddle the model per-
formance. Using segmentation methods, only ROI areas are 
preserved which reduces this adverse effect of considering 
the out of the boundary features. Segmentation can be car-
ried out manually by radiologists, but it takes a substantial 
amount of time. Several open-source automatic segmenta-
tion methods, such as region-based, edge-based, clustering, 
etc., are feasible to adopt. In the following, we will try to 
describe the prominent segmentation architecture and their 
properties.

The U-Net architecture is built with the help of Con-
volutional Neural Network (CNN) and it is modified such 
that it can achieve better segmentation in the domain of 

Table 3  (continued)

Paper Normal Pneumonia COVID-19 Total images

[47] 668 619 132 1419
Total 168,223 127,456 21,062 430,679

Fig. 7  Total number of X-ray images for different disease and normal 
patients used from February, 2020 to June, 2020

Fig. 8  Fundamental architecture of diagnosing COVID-19 from X-ray images
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medical imaging [55]. The main advantage of U-Net is 
that the location information from the downsampling path 
and the contextual information in the upsampling path are 
combined to get general information—containing context 
and localization, which is the key to predicting a better 
segmentation map. U-Net-based strategies were utilized in 
[12–14, 17, 18, 38, 40, 61, 62, 66, 73, 74, 76, 77, 80, 81, 
94, 95] for efficient and programmed lung segmentation 
extracting the lung region as the ROI.

For CT images, to keep contextual information between 
slices some researchers applied 3D versions of U-Net for 
lung segmentation named 3D U-Net ([3, 76]). Due to 
the low contrast at the infected areas in CT images and 
because of a large variety of both body shape, position 
over diverse patients, finding the infected areas from the 
chest CT scans was very challenging. Considering this 
issue, Narin et al. [27] developed a deep learning-based 
network named VB-Net. It is a modified 3D convolutional 
neural network based on V-Net [96]. In some other exist-
ing works, this segmentation method is adopted which 
alleviates the performance of the model [75, 83]. SegNet 
is also an efficient architecture for pixelwise denotation 
segmentation [97].

Segmentation methods, such as U-Net, Dense-Net, 
NABLA-N, SegNet, DeepLab, etc., were also used for the 
segmentation of lung images in different papers. The dif-
ferent segmentation methods used by different papers are 
illustrated in Table 5 and the number of papers in which 
a specific segmentation method is used is shown by a bar 
chart in Fig. 11.

Feature Extraction Methods

Feature extraction is an essential step for classification as 
the extracted features provide useful characteristics of the 
images. For image feature extraction, Deep Neural Networks 
have extraordinary capabilities to extract the important fea-
tures from a large-scale data set. As a result, these are used 
extensively in computer vision algorithms and CNN which 
is also known as ConvNet. In the following, some of the 
feature extraction models are briefly described.

Convolutional Neural Network (CNN)

In visual imagery fields, CNN architectures are mostly 
employed and adopted methods [100]. A CNN architecture 
is built with various types of network layer—pooling layer, 
convolutional layer, flatten, etc. corroborating the develop-
ment and performance of a model.

Convolution layer is the core building block of a CNN. 
The layer’s parameters are made up of a set of discover-
able kernels or filters which have a little responsive field but 
enlarge through the full input volume. Non-linear layer is the 
layer, where the change of the output is not proportional to 
the change of the input. This layer uses activation functions 
to convey non-linearity to data by adding after each convolu-
tion layer. Used activation functions can be Rectified Linear 
Unit (ReLU) [101], Tanh, etc.

Pooling layer is another important part of CNN archi-
tecture, where it is used to downsize the matrix. Pool-
ing can be done in several methods: Max Pooling, Min 

Fig. 9  Some examples of applying Pre-processing Techniques [a flipping by 180◦ , b cropping, and c adjusting brightness]

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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Table 4  Summary of the 
preprocessing and augmentation 
methods used by the papers

Paper Resize Flipping or 
rotating

Scaling or 
cropping

Contrast 
adjusting

Brightness or inten-
sity adjusting

GAN

[3] ✓ ✓

[14] ✓ ✓

[15] ✓

[17] ✓ ✓ ✓ ✓

[18] ✓

[17] ✓ ✓

[21] ✓ ✓ ✓

[22] ✓ ✓

[21] ✓ ✓

[22] ✓ ✓ ✓

[25] ✓

[27] ✓

[28] ✓

[29] ✓

[30] ✓ ✓

[31] ✓ ✓ ✓

[32] ✓ ✓

[31] ✓

[34] ✓ ✓ ✓ ✓ ✓

[35] ✓ ✓

[35] ✓ ✓

[37] ✓ ✓ ✓

[41] ✓

[42] ✓

[43] ✓

[42] ✓ ✓

[46] ✓ ✓ ✓

[48] ✓ ✓

[49] ✓ ✓

[50] ✓ ✓

[49] ✓

[52] ✓ ✓ ✓

[51] ✓ ✓ ✓

[54] ✓ ✓ ✓

[54] ✓ ✓

[59] ✓ ✓

[60] ✓ ✓ ✓

[60] ✓

[63] ✓ ✓

[62] ✓ ✓

[66] ✓

[67] ✓

[68] ✓ ✓

[68] ✓

[69] ✓ ✓

[72] ✓ ✓

[71] ✓

[74] ✓ ✓

[77] ✓ ✓

[76] ✓ ✓
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Pooling, Average Pooling, and Mean Pooling. Fully con-
nected layer is the layer, where every Neuron of a layer 
is connected with every other neuron of another layer. 

Traditional Multilayer Perceptron neural networks (MLP) 
and this layer have common principles.

Existing Pre‑trained CNN Models

Most of the COVID-19 diagnosis architectures used various 
pre-trained CNN models. A representation of the usage of 
this pre-trained model is shown in Table 6 (CT images) and 
Table 7 (X-ray images). To work with CT images, Residual 
Network (ResNet) [102], Densely Connected Convolu-
tional Network (DenseNet) [103], Visual Geometry Group 
(VGG) [104], SqueezeNet [49] architecture are the most 
adopted pre-trained architectures by researchers (Table 6) 
and ResNet [102], DenseNet [103], VGG [104], Inception 
[105] [106], InceptionResNet [107] models are employed 
for X-ray images (Table 7). Some of the most used existing 
pre-trained CNN models are described in the following.

ResNet [102] is a CNN architecture, designed to enable 
hundreds or thousands of convolutional layers. While previ-
ous CNN architectures had a drop off in the effectiveness of 
additional layers, ResNet can efficiently add a large number 

Table 4  (continued) Paper Resize Flipping or 
rotating

Scaling or 
cropping

Contrast 
adjusting

Brightness or inten-
sity adjusting

GAN

[77] ✓ ✓ ✓

[78] ✓ ✓

[80] ✓

[82] ✓

[84] ✓

[85] ✓ ✓ ✓ ✓

[86] ✓

[87] ✓ ✓

[88] ✓

[89] ✓ ✓ ✓

[92] ✓ ✓ ✓

[92] ✓

Fig. 10  Pie chart illustrates the augmentation techniques used by dif-
ferent papers (Here the percentage of usage of six different augmenta-
tion techniques is shown)

Table 5  Summary of different segmentation methods used in 
COVID-19 detection

Segmentation methods Papers Count

U-Net [12–14, 17, 18, 38, 40, 61, 62, 
66, 73, 74, 76, 77, 80, 81]

16

3D U-Net [3, 76] 2
VB-Net [75, 83] 2
DeepLab [17] 1
NABLA-N [16] 1
Dense-Net [41, 68] 2
SegNet [98, 99] 2
MiniSeg [19] 1

Fig. 11  Bar chart showing number of times different segmentation 
models used in different papers
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of layers leads to strong performance as an outcome of the 
model. ResNet is convenient and efficient for data-driven 
approaches. It has different variants, such as ResNet18, 
ResNet169, ResNet50, ResNet152, etc. focusing on dis-
tinct perspectives. Moreover, studying the works we can 
infer that, ResNet is the most used architecture for both CT 
and X-ray- based COVID-19 research. Fourteen papers that 
have used ResNet in their proposed models for CT image-
based works are shown in Table 6 and 27 papers are used for 
X-ray-based works are represented in Table 7.

DenseNet [103] is one of the current neural networks 
for visual object recognition. It is quite similar to the archi-
tecture ResNet but has some fundamental differences. This 
model ensures maximum information flow between the 
layers in the network that helps to extract the optimal fea-
tures. By matching feature map size all over the network, 
the authors connected all the layers directly to all of their 
subsequent layers—a Densely Connected Neural Network, 

or simply known as DenseNet. DenseNet made strides in 
the data stream between layers by proposing these distinc-
tive network designs. Unlike many other networks such as 
ResNet, DenseNets do not sum the output feature maps of 
the layer with the incoming feature maps but concatenate 
them. This architecture has different types of variants 
(DenseNet101, DenseNet169, DenseNet201, etc.) and it 
has an input shape of 224 × 224 . In Table 6 (CT image), 
DenseNet architecture is used by four papers, and from 
Table 7 (X-ray image), it is used by seventeen papers.

VGG [104] is another important CNN architecture for 
the purpose of feature extraction. VGG Network consists 
of 16 or 19 convolutional layers and is very convenient to 
demonstrate because of its very uniform architecture . In 
our survey, we studied four papers who work with VGG for 
COVID-19 detection purposes to get the features from CT 
images that are illustrated in Table 6, and fifteen papers from 
X-ray-based works are shown in Table 7.

Inception [105, 106] is a transfer learning-based method 
consists of two segments: feature extraction from images 
with the help of CNN and classification with softmax and 
fully connected layers . Various versions of Inception archi-
tectures are used in the medical imaging field. Among these, 
InceptionV1, InceptionV2, InceptionV3, and InceptionV4 
are the prominent ones with an input image shape of 299 
x 299. Twelve papers used an Inception-based model for 
X-ray-based classification of COVID-19 given in Table 6 
and only one paper [82] for CT images used this model to 
classify COVID-19 disease.

InceptionResnet [107] is the similar architecture as Incep-
tionV4 . InceptionResNetv1 is a half breed Initiation adap-
tation that encompasses a similar computational fetched to 
Inceptionv3. InceptionResNetV2 is a convolutional neural 
arrangement that is prepared on more than a million pictures 
from the ImageNet [108] database. The arrangement is 164 

Table 6  Summary of image feature extraction methods used by dif-
ferent papers for CT images

CNN Paper Count

ResNet [3, 12–15, 20, 64, 65, 74, 76, 78, 
79, 84, 85]

14

DenseNet [64, 68, 79, 85] 4
VGG [15, 64, 78, 79] 4
SqueezeNet [56, 84] 2
AlexNet [31] 1
CrNet [79] 1
EfficientNet [79] 1
FCN-8s [76] 1
GoogLeNet [15] 1
Inception [82] 1

Table 7  Summary of image 
feature extraction methods used 
by different papers for X-ray 
images

CNN Papers Count

ResNet [22–24, 27, 29, 33, 35, 37, 39–43, 46, 49, 50, 57, 59, 61, 63, 69–72, 86, 
88, 89, 91]

27

DenseNet [23, 25, 32, 38, 40, 42, 46, 49, 59, 63, 66, 70, 72, 86, 87, 89, 91] 17
VGG [23, 24, 28, 33, 37, 48, 49, 59, 60, 63, 66, 71, 72, 86, 92] 15
Inception [23, 27, 28, 41, 46, 49, 52, 59, 63, 66, 70, 91] 12
InceptionResNet [23, 27, 28, 42, 46, 59, 63, 66] 8
Xception [23, 28, 34, 35, 47, 59, 63, 66] 8
AlexNet [23, 31, 45, 57, 71, 72] 6
SqueezeNet [49, 57, 70, 87, 88] 5
GoogLeNet [23, 24, 57, 71] 4
NASnet [25, 42, 59] 3
ShuffleNet [23, 87] 2
EfficientNet [37] 1
Simple CNN [31] 1
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layers profound and can classify images into 1000 distinct 
categories. Eight papers are given in Table 7 utilized this 
strategy for X-ray pictures including extraction.

The number of different CNN models used for CT Images 
is shown in Fig. 12 (based on month). For feature extraction 
from CT images, researchers used various types of CNN 
models from which ResNet is the most used architecture 
within these 5 months. In February 2020 three types of CNN 
models are used, two papers used ResNet, one paper used 
DenseNet, and another paper used VGG. During March 
2020 four papers used ResNet, and AlexNet and FCN-8s 
used once. Whereas in April 2020 ResNet was used four 
times, three papers used VGG and SqueezeNet, CrNet, Effi-
cientNet, GoogLeNet, and Inception are used once. Moreo-
ver, in May 2020 ResNet is used twice and SqueezeNet is 
used once, and finally, in June 2020 DenseNet and ResNet 
are used by one and two papers, respectively.

Different CNN models and the number of times of its 
usage per month is shown for X-ray images in Fig. 13, 
where ResNet is one of the most used models for feature 
extraction. In our survey, during March 2020, ResNet is 
used six times, DenseNet two times, VGG three times, 
Inception four times, InceptionResNet three times, Xcep-
tion two times, and AlexNet, SqueezeNet one times each. 
In April 2020 ResNet is used ten times, DenseNet eight 
times, VGG six times, Inception three times, Inception-
ResNet three times and Xception five times. AlexNet, 
GoogLeNet, and Shuff leNet are both used twice. 
SqueezeNet, Inception, and InceptionResNet are used 
three times each. NASnet and EfficientNet are used once 
each time. During May 2020 ResNet is used five times, 
DenseNet and Inception are used two times each, VGG, 
SqueezeNet, and GoogLeNet three of them are used only 
once. Finally, in June 2020 ResNet is used seven times, 
DenseNet and VGG both are used five times each. Incep-
tion, InceptionResNet, Xception, AlexNet, GoogLeNet, 

and NASnet are used three, two, one, three, one, and two 
times, respectively.

Specialized CNN Methods for COVID‑19

Some researchers developed several architectures especially 
for COVID-19 detection with the backbone of basic CNN. 
These architectures have additional capabilities to classify 
images into multiple classes such as COVID-19, Viral pneu-
monia, Bacterial Pneumonia, and Normal case. Because in 
the primary stage, these models are trained on ImageNet, 
and then it is trained on various lung diseases CT or X-ray 
images. In the following, a brief discussion on the ensem-
ble or specialized CNN methods to detect COVID-19 is 
described.

COVID-19 Detection Neural Network (COVNet) archi-
tecture was introduced by Li et al. [74] which is a 3D deep 
learning architecture to detect COVID-19. This architecture 
can extract both 2D local and 3D global illustrative features. 
The COVNet architecture is built with a ResNet architecture 
as the base model. A max-pooling operation is used for the 
feature extraction which is carried out for all slices of an 
image. Moreover, the feature map is connected with a fully 
connected layer and the author used a softmax activation 
function for the probability score to accurately classify mul-
tiple class (COVID-19, Community-Acquired Pneumonia 
(CAP), and non-pneumonia).

COVID-Net architecture is specially adapted for COVID-
19 detection from chest X-ray images [51]. It has high archi-
tectural diversity and selective long-range connectivity. The 
massive use of a projection–expansion–projection design 
pattern in the COVID-Net architecture is also observed for 
the classification. COVID-Net architecture is incorporated 
into a heterogeneous association of convolution layers. The 
proposed COVID-Net is pre-trained on the ImageNet data 
set and then applied to the COVIDx data set. Applying this 

Fig. 12  Bar chart for describing used CNN for CT images (by month)
Fig. 13  Bar chart describing the use of different CNN models for 
X-ray images (by month)
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architecture, they achieved accuracy about 93.3% on the 
COVIDx data set.

ChexNet is originally a DenseNet-121 type of deep 
network which is trained on Chest X-ray images intro-
duced by the paper [91]. Therefore, this architecture has 
been specially designed to diagnose COVID-19.1024-D 
feature vectors are extracted for the compact classifiers 
in ChexNet. They used the Softmax activation function to 
classify COVID-19, Normal, Viral Pneumonia, and Bac-
terial Pneumonia. The number of trainable parameters in 
this model is 6955,906.

COVID-CAPS is a capsule-based network architecture 
invented by Afshar et al. [58]. This model consists of four 
convolutional layers and three capsule layers. The pri-
mary layer is a convolutional layer, then batch-normaliza-
tion is attached. The second layer is also a convolutional 
layer, followed by a pooling layer. Correspondingly, the 
third and fourth layers are convolutional, and the fourth 
layer is reshaped as the first capsule layer. Three Capsule 
layers are embedded in the COVID-CAPS to perform the 
routing. The last Capsule layer contains the classification 
parameters of the two classes of positive and negative 
COVID-19. The trainable parameters are 295,488 for this 
model and achieved 98.3%.

Detail-Oriented Capsule Networks (DECAPS) archi-
tecture is introduced by Mobiny et al. [21] which uses a 
ResNet with three residual blocks. This architecture is 
trained in CT images. This model obtained an area under 
the curve (AUC) of 98%. Besides these, some papers 
adopted different types of ensemble approaches such as 
Details Relation Extraction neural network (DRE-Net) 
[64]—ResNet-50 on Feature Pyramid Network [FPN] for 
extracting top K details from each image. Furthermore, an 
attention module is combined to learn the importance of 
every detail. In the training stage, [75] and [13] employed 
the Least Absolute Shrinkage and Selection Operator 
(LASSO) to traverse the optimal subset of clinical–radi-
ological features for classification. Moreover, GLCM, 
HOG, and LBP are used by Sethy et al. [23]. In addition, 
Gozes et al. [12] used commercial off-the-shelf software 
that detects nodules and small opacities within a 3D lung 
volume and subsystem.

Besides some authors applied transfer learning 
approach [66, 86, 88] with the basic CNN models for 
better results. Basically, transfer learning is a technique 
for foretelling modeling on a different but somehow the 
same problem that can then be reused partially or fully 
to expedite the training and develop the performance of 
a model on the problem. In deep learning, transfer learn-
ing [109] means regenerating the weights in one or more 
layers from a pre-trained network architecture in a new 
model and either keeping the weights fixed, fine-tuning 

them, or adapting the weights entirely when training the 
model.

Interpretability

Fundamentally, a learning model consists of algorithms that 
try to learn patterns and relationships from the data source. 
To make the results obtained from machines interpretable, 
researchers use different techniques, such as Class Activa-
tion Mapping (CAM), Gradient-weighted Class Activation 
Mapping (Grad-CAM) based on a heatmap, Local Inter-
pretable Model-agnostic Explanations (LIME) [110], and 
SHapley Additive exPlanations (SHAP) [111]. CAM is a 
method that creates heatmaps to show the important portions 
from the images, especially which regions are essential in 
terms of the Neural Network. CAM has various versions, 
such as Score CAM and Grad-CAM. The heatmap generated 
by CAM is a visualization that can be interpreted as where 
in the image the neural net is searching to make its decision. 
LIME tries to interpret models to guess the predictions of 
the predictive model in specific regions. LIME discovers the 
set of super pixels with the most coherent connection with 
the prediction label. It creates explanations by generating 
another data set of random disturbance by turning on and 
off a part of the super-pixels in the image. The aim of SHAP 
is to describe the forecast of a feature vector by calculating 
the contribution of distinct feature to the forecast. This is 
very important in image classification and object localiza-
tion problems.

In our survey, there are few papers that utilized CAM 
[112] and few papers [12, 14, 22, 36, 38–42, 47, 56, 66, 
67, 74, 86] utilized Grad-CAM with heatmap for better 
understanding of the region it is centering on. At the same 
time, heatmaps can also provide the radiologists with more 
useful information and further help them. In Papers [113, 
114] LIME is used as one of the interpretable techniques to 
explain the outcome of different machine learning models 
for COVID-19 images. SHAP is used to visualize feature 
importance in [113, 115].

Classification

Almost all of the COVID-19 diagnosis models use Convo-
lutional Neural Network [96] as a feature extractor and as 
a classifier, it uses softmax or sigmoid. Some authors also 
attempted to amplify CNN with a sigmoid layer. The authors 
of [45] merged CNN with the softmax layer along with the 
SVM classifier [116]. Kassani et al. [59] used CNN with 
softmax layer along a decision tree, random forest, XGBoost 
[117], AdaBoost [118], Bagging Classifier [119] and Light-
GBM [120]. Furthermore, the authors of Ahishali et al. [91] 
also merged CNN with KNN, support estimator network, 
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and SVM classifier. Nonetheless, these models need a large 
amount of data for training which is in shortage of COVID-
19 images.

Essentially there are two ways of classifying COVID-
19 images, Binary Classification, and Multiclass classifi-
cation. In Binary Classification authors tried to separate 
COVID-19 and non-COVID-19 patients, but this technique 
is very inaccurate as other types of lung diseases (viral 
pneumonia, viral pneumonia, bacterial pneumonia, and 
Community-Acquired Pneumonia) can be classified as 
COVID-19. For that reason, many authors differentiate 
COVID-19, viral pneumonia, bacterial pneumonia, com-
munity-Acquired Pneumonia, and normal images by clas-
sifying them using a softmax classifier. In terms of accu-
racy of detecting COVID-19 images, multiclass classifiers 
performed better than binary classifiers. A summary of 
different classification techniques used by different papers 
is illustrated in Tables 8 and  9.

Some authors also tried to detect COVID-19 in several 
stages. In the beginning, the authors separated normal and 
pneumonia images. After that, they classify COVID-19 
by filtered pneumonia images. Several-stage classification 
helps the models to memorize various leveled connections. 
In paper [38, 40], authors used several-stage classification 
rather than an end to end method to detect COVID-19 
which outperforms several the end to end techniques. On 
the flip side, the performance of multiclass classification 
relies on data sets. If there is a shortage of data set, the 
model cannot become familiar with the various leveled 

connections between classifications such as Pneumonia to 
Viral Pneumonia to COVID-19.

Experimental Results of the Papers

Researchers used different evaluation metrics to analyze 
their COVID-19 model’s performance. Among them, the 
most popular and used metrics for detecting COVID-19 are 
Accuracy, Precision, Recall/Sensitivity, F1 Score, Specific-
ity, and Area Under Curve (AUC). In our work, we tried 
to record the performance with these metrics from all the 
papers which is represented in Table 10 for CT and in 
Table 11 for X-ray images. In addition, we have given the 
number of COVID-19 images from the total images used 
for training, testing, and validation purpose. Some papers 
explicitly stated the train-test split of COVID-19 images and 
for some papers, we calculated the split according to the 
ratio that is provided in the paper. Even so, for some papers, 
it is not clearly stated how they distributed their data set [16, 
17, 20, 23, 75]. In addition, some papers explicitly stated the 
use of data for validation [27, 32, 33, 38, 40, 41, 44, 49, 52, 
56, 63–65, 68, 70, 74, 81, 82, 84, 87, 89].

A summary of the results obtained by the studied models 
using CT images is illustrated in Table 10. These papers 
with their Accuracy, AUC, Sensitivity, and Specificity are 
given along with their distribution of COVID-19 images in 
training, testing, and validation set. It can also be observed 
that CT image-based models gained a minimum accuracy of 
79.50% for the paper [85] and maximum accuracy of 99.56% 
for the paper [16].

A summary of the results obtained by the studied models 
using X-ray images is illustrated in Table 11. Papers with 
their Accuracy, AUC, Sensitivity, and Specificity are given 
along with their distribution of COVID-19 images in train-
ing, testing, and validation set. It can also be seen that X-ray 
image-based models gained a minimum accuracy of 89.82% 
for the paper [22] and maximum accuracy of 99.94% for the 
paper [16]. For both Tables 10 and  11, the publication date, 
the total number of images used by the respective papers is 
provided. In addition, cited by (Number of papers) indicates 
the total number of papers that have cited the specific paper 
up to July 10, 2020.

Table 8  Summary of classification methods used by different papers 
both for CT and X-ray images

Classification methods Papers Count

Binary classification [12, 15, 16, 21, 23, 25, 27, 28, 
31–34, 38, 41, 42, 44, 46–49, 
56–59, 61, 62, 68, 71, 72, 75, 
77–79, 81–85, 87, 88, 90–92]

43

Multiclass classification [3, 13, 14, 16, 17, 22, 24, 28, 29, 
35–37, 39, 40, 42, 45, 49–54, 60, 
63–66, 69, 70, 73, 74, 76, 79, 81, 
84, 86, 89]

37

Table 9  Summary of classification methods used by different papers both for CT and X-ray images (monthwise)

Months Binary Count Multiclass Count

February, 2020 – 0 [3, 64] 2
March, 2020 , [12, 27, 28, 31, 49, 62, 68] 8 [22, 28, 29, 49, 50, 63, 65, 73, 74, 76] 10
April, 2020 [15, 16, 21, 23, 32–34, 38, 57–59, 77–79, 81, 

82, 87, 88]
19 [14, 16, 17, 35, 54, 66, 79, 81, 86] [36, 37, 39, 89] 13

May, 2020 [41, 83, 84, 90] 4 [24, 40, 51, 53, 69, 70, 84] 7
June, 2020 [25, 42, 44, 46–48, 61, 71, 72, 85, 91, 92] 12 [13, 42, 45, 52, 60] 5
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After analyzing all the papers it can be seen that most 
models can not accurately distinguish between Pneumonia 
and COVID-19 from the medical images. All the papers 
mentioned only focused on medical images but did not con-
sider features, such as initial symptoms, travel history, labo-
ratory assessment, contact history, and distinction between 
severe and mild COVID-19 [3, 68, 75, 86]. Most papers 
worked on the type of data sets that are not balanced con-
taining more COVID-19 negative images, hence paper [58] 
suggested the use of modified loss function to tackle imbal-
anced data.

A single CNN network is not able to obtain higher 
dimensional fraternity features that are the decider for the 
classification. Whereas, modern pre-trained CNN models 
were fused to obtain higher dimensional fusion features 
which overcome the problem of insufficient features from a 

single CNN network model [15]. Due to this most authors 
used pre-trained models instead of single CNN models to 
detect COVID-19 from medical images.The main advan-
tage of using pre-trained models such as Inception, ResNet 
and DenseNet is that they all have strong power of details 
extraction, but the problem with these models is that they 
fallaciously focus on some image edges, corners and other 
image areas that are not related to COVID-19 as these mod-
els are pre-trained with non-medical images [79]. Another 
drawback of using CNN-based models is that these models 
work like a black box giving no intuitions into the impor-
tant image features. These methods lack transparency and 
interpretability [74, 86]. Moreover, most pre-trained models 
require a lot of time to train due to the immense number 
of parameters, but Polsinelli et al. [56] used SqueezeNet to 

Table 10  Summary of result evaluation for CT images

Publication Image Training Testing+ validation Result (%) Citation

February 21, 2020 [3] 618 189 30+ N/A Accuracy:86.70 117
February 25, 2020 [64] 274 79 25 + 9 Accuracy:94.00 AUC:91.00 22
March 01, 2020 [73] 46096 691 636 + N/A Accuracy:98.85Sensitivity:94.34Specificity:99.16 37
March 19, 2020 [74] 4356 1048 131 + 117 Sensitivity:90.00 Specificity:96.16 AUC:96.00 172
March 22, 2020 [75] 2685 NS NS + NS Accuracy:87.90 Sensitivity:90.70 Specificity:83.30AUC:94.20 24
March 23, 2020 [76] 1418 723 154 + N/A Sensitivity:97.4 Specificity:92.2 AUC:99.10 13
March 24, 2020[12] 206 50 56 + N/A Sensitivity:98.20 Specificity:92.20 AUC:99.60 87
March 26, 2020 [68] 5372 1266 102 + 92 Accuracy:85.00 Sensitivity:79.35 Specificity:71.43 AUC:86.00 8
March 26, 2020[62] 630 289 76+ N/A Accuracy:90.10Sensitivity:90.70 Specificity:91.10 35
March 30, 2020[65] 89628 7543 4887 + 2514 Accuracy:98.80 Sensitivity: 98.20 Specificity: 98.90 2
March 31, 2020[31] 361 339 17+ N/A Accuracy:94.10Sensitivity:90.00 Specificity:100.00 11
April 06, 2020[14] 2064 829 109 + N/A Sensitivity:94.00 Specificity:98.00 AUC:99.40 11
April 07, 2020 [15] 12000 4500 1500 + N/A Accuracy:98.93 Sensitivity:97.60 Specificity:97.63 5
April 10, 2020 [16] 420 375 45 + N/A Accuracy:99.56 2
April 12, 2020 [17] 110 NS NS + 10-Fold Accuracy:89.00 7
April 14, 2020 [77] 360 120 30 + N/A Accuracy:89.20 Sensitivity:88.60 Specificity:87.60 AUC:92.30 4
April 15, 2020 [78] 79396 2794 64711 + N/A Sensitivity:95.00 Specificity: 93.00 11
April 17, 2020 [79] 746 191 98 + 60 Accuracy:83.00 AUC:87.00 4
April 17, 2020 [80] 470 165 110 + N/A Accuracy:93.65 Sensitivity:94.25 Specificity:92.79 1
April 17, 2020 [21] 746 286 105 + N/A Accuracy:87.60 Specificity:85.20 AUC:96.10 2
April 21, 2020 [18] 829 298 75 + NS Sensitivity:86.70 Specificity:99.30 1
April 21, 2020 [81] 1044 349 50 + 50 Accuracy:86.00 Sensitivity:94.00 Specificity:94.00 AUC:93.00 3
April 21, 2020 [19] 100 60 40 + N/A Accuracy:83.62 Sensitivity:97.42 3
April 24, 2020 [82] 1065 340 N/A + 290 Accuracy:89.50 Sensitivity: 87.00 Specificity:88.00 77
April 24, 2020 [56] 783 251 108 + 80 Accuracy:83.00Sensitivity:85.00 Specificity:81.73 2
May 07, 2020 [83] 2522 1196 299 +5 fold Accuracy:97.79 Sensitivity:93.05 Specificity:89.95 AUC:96.35 1
May 21, 2020 [20] 130 NS NS + NS Sensitivity:72.50Specificity:96.00 10
May 28, 2020 [84] 746 178 95 + 76 Accuracy:99.40 Sensitivity:100.00 Specificity:98.60 AUC:99.65 0
June 02, 2020 [13] 4260 751 NS + NS Sensitivity:90.19 Specificity:95.76 AUC:97.17 12
June 17, 2020 [85] 812 349 N/A + N/A Accuracy:79.50AUC:90.10 35
Total = 30 Average Accuracy: 90.69Sensitivity:91.48 Specificity:92.26 AUC: 

94.46
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Table 11  Summary of result evaluation for X-ray images

Publication Image Training 
testing+

Validation Result (%) Citation

March 24, 2020 [63] 50 10 5+ 10 Accuracy: 90.00 Sensitivity:100.00 Precision:100.00 F1 Score: 91.0 
AUC:90.00

38

March 24,2020 [27] 100 40 10+ 8 Accuracy:98.00 Sensitivity:96.00 Specificity:100.00 Precision:100.00 
F1Score:98.00

93

March 25, 2020 [28] 1427 202 22 + N/A Accuracy:96.78 Sensitivity:98.66 Specificity:96.46 86
March 27, 2020 [29] 1531 70 30 + N/A Accuracy:96.00 AUC:95.18 35
March 27, 2020 [22] 5941 54 14+ N/A Accuracy:89.82 19
March 29, 2020 [49] 3487 304 85 +34 Accuracy:99.94 25
March 30, 2020 [30] 40 N/A N/A + N/A Accuracy:97.48 Sensitivity: 95.27 Specificity:99.70 5
March 31, 2020[31] 170 120 50+ N/A Accuracy:98.00 Sensitivity:100.00 Specificity:96.00 11
March 31, 2020[50] 13975 N/A N/A + N/A Accuracy:96.23 Precision:100.00 F1 Score:100.00 25
April 01, 2020 [54] 3905 409 46 + N/A Accuracy:99.18 Sensitivity:97.36 Specificity:99.42 9
April 02, 2020 [57] 5863 N/A N/A + N/A Accuracy:99.00 Precision:98.97 Sensitivity:98.97 F1 Score:98.97 9
April 09, 2020 [86] 16995 181 78 + N/A Accuracy:91.60 Sensitivity:92.45 Specificity:96.12 6
April 09, 2020 [32] 414 146 31 + 30 Accuracy:98.00 1
April 10, 2020 [16] 5216 NS NS + NS Accuracy:94.52 2
April 13, 2020 [33] 455 102 33 + 36 Accuracy:91.24 AUC:94.00 12
April 13, 2020 [87] 537 125 36 + 18 Accuracy:93.5 AUC:94.00 6
April 14, 2020 [34] 1300 N/A N/A + N/A Accuracy:89.60 Precision:93.00 Sensitivity:98.20 8
April 16, 2020 [66] 16700 286 27 + N/A Accuracy:99.01 AUC:99.72 4
April 16, 2020[58] 864 70 50 + N/A Accuracy:95.70 Sensitivity:90.00 Specificity:95.80 AUC:97.00 19
April 17,2020 [35] 15085 149 31+ N/A Accuracy:99.56 Sensitivity:80.53 3
April 20,2020 [88] 5071 31 40 + N/A Sensitivity:97.50 Specificity:95.00 AUC:99.60 8
April 22,2020 [23] 381 NS NS + NS Accuracy:95.33 Sensitivity:95.33 F1 Score:95.34 43
April 22,2020 [59] 274 137 NS + N/A Accuracy:99.00 3
April 24,2020 [36] 109203 180 45 + N/A Accuracy:95.30 1
April 28,2020 [37] 13800 152 31 + N/A Accuracy:93.90 5
April 30,2020 [38] 59937 89 35 + 43 AUC:88.04 2
April 30,2020 [39] 11663 258 60 + N/A Precision:98.15 Sensitivity:88.33 AUC:98.50F1 Score:92.98 1
April 30,2020 [89] 15111 175 20 +20 Accuracy:89.40 0
May 01,2020 [40] 6297 105 10 + 10 Accuracy:97.10 1
May 05,2020 [41] 502 126 36 + 18 Accuracy:88.90 Specificity:96.40 F1 Score:84.40 9
May 06,2020 [53] 1144 63 27 + N/A F1 Score: 89.60 8
May 08,2020 [90] 6286 370 92+ 5-fold Accuracy:95.90 Sensitivity:98.50 Specificity:95.70 3
May 11,2020 [51] 13975 258 100 + N/A Accuracy:93.30 Sensitivity:91.00 F1 Score:98.90 128
May 17,2020 [69] 196 74 31 + N/A Accuracy:95.12 18
May 21,2020 [24] 2239 191 48 + N/A Accuracy:97.01 4
May 23,2020 [70] 701 270 85 + 68 Accuracy:97.73 0
June 07,20[91] 5824 4659 1165 + N/A Accuracy:99.49 Sensitivity:99.43 Specificity:99.81 0
June 18,2020[42] 30099 88 11 + N/A Accuracy:98.00 AUC:99.00 2
June 16,2020 [43] 15282 286 100 + N/A Accuracy:98.06 0
June 23,2020 [71] 51960 736 314 + N/A Accuracy:97.54 Sensitivity:97.88 Specificity:97.15 0
June 23,2020 [72] 2071 350 150 + N/A Accuracy:98.90 0
June 11, 2020 [92] 8474 7626 848 + N/A Accuracy:98.60 0
June 18, 2020 [25] 3300 247 62 + N/A Sensitivity:100.00 Specificity:99.50 0
May June [48] 50 20 5 + N/A Accuracy:91.00 Sensitivity:100.00 Specificity:80.00 0
June 19,2020 [44] 1312 228 65 + 33 Accuracy:97.40 Sensitivity:85.15 Specificity:99.05 0
June 09,2020 [60] 6523 N/A N/A + N/A Accuracy:98.00 Sensitivity:96.00 Specificity:98.00 0
June 20,2020 [67] 305 N/A N/A + N/A Accuracy:97.40 0

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



 SN Computer Science (2021) 2:434434 Page 18 of 22

SN Computer Science

solve this problem , a light weight model that reaches similar 
accuracy to modern CNN models.

Comparing Tables 10 and 11, it can be said that the X-ray 
image-based models performed better than the CT image-
based models. The average Accuracy, Sensitivity, Speci-
ficity, and AUC for CT Image-based models are 90.69 %, 
91.48%, 92.26%, and 94.46%, respectively, and for X-ray-
based models are 96.00%, 91.09%, 96.45%, and 95.50%, 
respectively.

Conclusion

As COVID-19 is spreading worldwide expeditiously, accu-
rate and faster detection of the disease has become the most 
essential objective to defend this outbreak. In this article, we 
tried to present a comprehensive survey of AI-empowered 
methods that use medical images to combat this pandemic. 
The fundamental purpose of this survey is to represent the 
current information so that researchers understand and aware 
of the up-to-date knowledge and build a model that can accu-
rately detect COVID-19 disease at an economical cost and 
relatively faster in time. We surveyed a total of 80 COVID-
19 diagnosis architectures among which 28 are using CT 
images, 50 are using X-ray images and 2 are using both CT 
and X-ray images. Till now none of these models are proved 
to be as reliable to replace RT-PCR tests and still, research-
ers are trying to improve these techniques. From our survey, 
it is noticeable that the X-ray image data set is more widely 
available than the CT Image data set as a CT scan procedure 
is costlier and more time-consuming than an X-ray. There-
fore, most of the researchers utilized Chest X-ray images for 
diagnosing COVID-19. After analyzing the existing research 
works in this domain, we find out that there exists a shortage 
of annotated medical images of COVID-19 affected people. 
Enriching quality annotated medical images of COVID-19 
affected people can play a significant role to boost up the 
performance of the mentioned data-hungry models. Further-
more, we remarked that using segmentation as preprocessing 
has an extensive impact on model performance. We also 
observed that domain adoption in transfer learning is the 

widely used technique which gives a promising result. Fur-
thermore, many researchers used Gradient-weighted Class 
Activation Mapping (Grad-CAM) with heatmap to interpret 
the performance of the model. Though this survey paper 
cannot claim to be an in-depth think about those studies, it 
presents a practical outlook and shows a valid comparison 
of the researches in this field over these months which can 
be the conductor for the researcher to find future direction.
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